Chem. Ber. 119, 1174-1188 (1986)

Dimere (Dihalogenaluminiooxy)diorganoborane¹⁾

Roland Köster*, Yi-Hung Tsay²⁾, Carl Krüger²⁾ und Janusz Serwatowski³⁾

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim an der Ruhr 1

Eingegangen am 9. September 1985

Tetraorganodiboroxane R₂BOBR₂ (1) [1a: $R = C_2H_5$; 1b: $R_2 = 1,5$ -Cyclooctandiyl = C_8H_{14}] reagieren mit Aluminiumtrihalogeniden AlHal₃ (2) [(2a)_n: Hal = Cl, (2b)₂: Hal = Br] unter Abspaltung von Halogendiorganoboranen R₂BHal (4) [4aa: $R = C_2H_5$, Hal = Cl; 4ab: $R = C_2H_5$, Hal = Br; 4ba: $R_2 = C_8H_{14}$, Hal = Cl; 4bb: $R_2 = C_8H_{14}$, Hal = Br] in Ausbeuten von >90% zu den kristallisierten, in Lösung und in festem Zustand dimeren (Dihalogenaluminiooxy)diorganoboranen (Hal₂AlOBR₂)₂ (3xy)₂ [(3aa)₂: $R = C_2H_5$, Hal = Cl; (3ba)₂: $R_2 = C_8H_{14}$, Hal = Cl; (3ab)₂: $R = C_2H_5$, Hal = Br], die über zwei AlOAl-Bindungen assoziiert sind [¹H-, ¹¹B-, ¹³C-, ¹⁷O-, ²⁷Al-NMR-Daten]. – Die Röntgenstrukturanalysen von (3aa)₂ und (3bb)₂ bestätigen den AlOAlO-Vierring mit jeweils exocyclischen O-Diorganoboryl-Resten.

Dimeric (Dihalogenoaluminiooxy)diorganoboranes¹⁾

Tetraorganodiboroxanes R₂BOBR₂ (1) [1a: $R = C_2H_5$; 1b: $R_2 = 1,5$ -cyclooctanediyl = C_8H_{14}] and aluminium trihalides AlHal₃ (2) [(2a)_n: Hal = Cl, (2b)₂: Hal = Br] eliminate halogenodiorganoboranes R₂BHal (4) in yields >90% to give crystalline, in solution and in the solid state dimeric (dihalogenoaluminiooxy)diorganoboranes (Hal₂AlOBR₂)₂ (3xy)₂ [(3aa)₂: $R = C_2H_5$, Hal = Cl; (3ba)₂: $R_2 = C_8H_{14}$, Hal = Cl; (3ab)₂: $R = C_2H_5$, Hal = Br], having two AlOAl bonds [¹H, ¹¹B, ¹³C, ¹⁷O, ²⁷Al NMR data]. – The X-ray analyses of (3aa)₂ and (3bb)₂ confirmed the four-membered AlOAlO ring with the exocyclic O-diorganoboryl groups.

Die Chemie der Tetraorganodiboroxane, der Organobor-Analoga des Wassers, wurde bisher noch nicht umfassend bearbeitet^{4,5)}. Seit 1981/1982 untersuchen wir die Reaktivitäten des Tetraethyldiboroxans (1a) und des 1,1:3,3-Bis(1,5-cyclooctandiyl)diboroxans (1b)^{6,7)}.

1a⁸⁾ und 1b⁹⁾ sind präparativ in reinster Form leicht zugänglich und bei Raumtemperatur unter Luftausschluß sowie in Abwesenheit protonenhaltiger Verbindungen und von BH-Boranen stabil.

Wir berichten hier über die Reaktion und die Produkte der Verbindungen 1a und **b** mit festem Aluminiumtrichlorid $(2a)_n$ und -tribromid $(2b)_2$.

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0404-1174 \$ 02.50/0 Läßt man in Toluol bei ≈ 20 bis 50°C auf Tetraethyldiboroxan (1a) festes Aluminiumtrichlorid (2a)_n einwirken, so löst sich (2a)_n zunächst vollständig auf. Beim Abkühlen auf ≈ 0 °C fallen gut ausgebildete, farblose Kristalle aus.

Nach der in Benzol kryoskopisch ermittelten Molmasse (Gef. 369) handelt es sich um das reine dimere (Dichloraluminiooxy)diethylboran, $(3aa)_2$, das ausgehend von 2 mol 1a und 2 mol 2a in \approx 95proz. Ausbeute nach Gleichung (1) isoliert werden kann. Außerdem bilden sich pro mol $(3aa)_2$ 2 mol Chlordiethylboran (4aa), die sich leicht abdestillieren lassen.

$$2 \mathbf{1a} + 2 \operatorname{AlCl}_{3} \xrightarrow{\text{Totuol}} \left[\operatorname{Cl}_{2}\operatorname{AlOB} \right]_{2} + 2 \xrightarrow{\text{B-Cl}} (1)$$

$$2\mathbf{a} \qquad (3\mathbf{aa})_{2} \qquad 4\mathbf{aa}$$

Die Röntgenstrukturanalyse bestätigt, daß **3aa** auch im festen Zustand als dimeres (**3aa**)₂ vorliegt und daß die (**3aa**)₂-Assoziation über zwei AlOAl-Bindungen erfolgt (vgl. Abb. 1). (**3aa**)₂ enthält somit in Analogie zum dimeren (Dichloraluminiooxy)trimethylsilan¹⁰⁾ als 2,2,4,4-Tetrachlor-1,3-bis(diethylboryl)-1,3,2,4-dioxadialumetan den AlOAlO-Vierring (vgl. Abb. 1).

Aus den IR- und den Massen-Spektren sowie vor allem aus den NMR-Spektren (¹H-, ¹¹B-, ¹³C-, ¹⁷O-, ²⁷Al-NMR, s. unten) geht hervor, daß **3aa** auch in Lösung als Assoziat mit AlOAl-Bindungen aufgebaut ist. Eine Assoziation über AlClAl-Bindungen kann wegen der Lage des ¹⁷O-NMR-Signals ($\delta^{17}O = 128$) sicher ausgeschlossen werden. Eine partielle Dissoziation von (**3aa**)₂ läßt sich in toluolischer Lösung nicht nachweisen. Man beobachtet nur ein ¹⁷O-NMR- und auch nur ein ²⁷Al-NMR-Signal.

Die Verbindungen von Typ $(3)_2$ waren vor Beginn unserer Arbeiten $(1981)^{6,7}$ unbekannt. Unseres Wissens handelt es sich auch um die ersten voll charakterisierten Verbindungen mit AlOB-Gruppierungen¹¹. Inzwischen konnten wir aus Triorganoboroxinen mit $(2a)_n$ bzw. $(2b)_2$ noch einen anderen definierten Verbindungstyp mit AlOB-Gruppierung herstellen^{7,12}.

Bei der Bildung von $(3aa)_2$ aus 1a mit $(2a)_n$ im Überschuß läßt sich kein Mischassoziat von 3aa und 2a mit Al(O)ClAl-Brücke¹³⁾ nachweisen. Die Reaktion des monomeren 1a mit festem $(2a)_n$ verläuft offensichtlich nur bis zur Stufe des stabilsten Homodimeren $(3aa)_2$. Wir vermuten, daß dem Diethylboryloxy/Chlor-Austausch am Aluminium-Atom die Bildung einer nicht isolier-, aber nachweisbaren Additionsverbindung von 1a und 2a nach Gleichung (2) vorgelagert ist (vgl. S. 1182).

$$1a + 2 2a \longrightarrow B \xrightarrow{Cl} Al \xrightarrow{Cl} Cl \rightarrow 2a + 3aa + 4aa \qquad (2)$$

1b reagiert mit 2a in Benzol zu 9-Chlor-9-borabicyclo[3.3.1]nonan (4ba) und nach Gleichung (3) in 92proz. Ausbeute zu einer äußerst schwer löslichen, hoch-

schmelzenden Verbindung. Die Analysenwerte und die NMR-Daten des Produkts stimmen mit der Zusammensetzung und Struktur von (3ba)₂ überein.

 $(3ba)_2$ schmilzt bei 276°C ohne Zersetzung. Wegen der Schwerlöslichkeit ließ sich die Molmasse kryoskopisch nicht bestimmen. Die NMR-Daten (vgl. Tab. 2) weisen aber auf den gleichen Assoziat-Typ wie bei $(3aa)_2$ hin.

Aus 1a bzw. 1b erhält man mit dimerem Aluminiumtribromid $(2b)_2$ in Toluol bei 20-60°C ebenfalls glatt und in hohen Ausbeuten die Verbindungen $(3ab)_2$ bzw. $(3bb)_2$. Aufgrund der NMR-Daten (vgl. Tab. 2) sind die Verbindungen in Lösung ebenfalls über zwei AlOAl-Bindungen assoziiert. Beim festen $(3bb)_2$ wird dies durch die Röntgenstrukturanalyse (vgl. Abb. 2) bestätigt.

 $(3ab)_2$ und $(3bb)_2$ lösen sich gut in Benzol. Die kryoskopische Molmassen-Bestimmung liefert bei beiden Verbindungen deutlich höhere Werte als bei der Chlorverbindung $(3aa)_2$. Man findet für 3ab den ≈ 2.5 fachen und für 3bb den ≈ 2.7 fachen Wert des einfachen Formelgewichts. Aufgrund dieses Ergebnisses kann nicht ausgeschlossen werden, daß 3ab und 3bb in Lösung zwei- bis dreifach assoziert sind. Allerdings sprechen sämtliche NMR-Daten gegen diese Vermutung.

Das kryoskopische Ergebnis mit den erhöhten Assoziationsgraden für **3ab** und **3bb** könnte zwar auch durch die Vergrößerung der Halbhöhenbreite des ¹⁷O-NMR-Signals von 60 Hz bei (**3aa**)₂ auf 120 Hz bei (**3ab**)_n bzw. von 90 Hz bei (**3ba**)₂ auf 110 Hz bei (**3bb**)_n gestützt werden. Vermutlich werden jedoch die ¹⁷O-NMR-Signale bereits durch die Substitution von Chlor durch Brom verbreitert. Die Lagen der ¹⁷O- und der ²⁷Al-NMR-Resonanzen sind beim Übergang von (**3aa**)₂ nach (**3bb**)₂ nicht signifikant verändert (vgl. Tab. 2). Trotzdem kann nicht völlig ausgeschlossen werden, daß **3ab** und **3bb** in Analogie zu anderen RAIO-Verbindungen¹⁴⁾ zumindest im Gleichgewicht auch als gelöste Trimer-Assoziate (**3ab**)₃ bzw. (**3bb**)₃ vorliegen:

$$3 (\mathbf{3bb})_2 \rightleftharpoons 2 (\mathbf{3bb})_3$$
 (4)

Im festen Zustand liegt 3bb jedoch eindeutig als (3bb)₂ vor (vgl. Abb. 2).

Massenspektren: Bei den mit Hilfe der Elektronen-Ionisation (70 eV) erzeugten Massenspektren (vgl. Tab. 1)¹⁵⁾ beobachtet man bei $(3ba)_2$ und bei $(3bb)_2$ jeweils die Molekülmasse als Basispeak. Die Massenspektren von $(3aa)_2$ und $(3ab)_2$ haben

dagegen keinen Molekülpeak. Bei $(3aa)_2$ findet man als Basispeak die um 28 Masseneinheiten $(C_2H_4?)$ reduzierte Bruchstückmasse (365 - 28 = 337). Intensivste Masse bei $(3ab)_2$ ist die wenig charakteristische Masse m/z 41. Mit etwa 50% rel. Intensität tritt bei $(3ab)_2$ die Masse m/z 515 auf, die vermutlich aus der Molekülmasse 543 durch Abspaltung von 28 Masseneinheiten gebildet wird.

Nr.	Chem. Molmasse	Gef. M ⁺	Basispeak	m/z (% rel. Intensität) Bruchstückmassen				
(3aa) ₂	365.6	_	337	203 (55) 153 (42) 119 (22)	69 (25) 57 (31) 41 (32)			
(3 ba) ₂	469.8	470	470	359 (28) 199 (20) 171 (32) 138 (33)	125 (35) 79 (28) 67 (35) 41 (53)			
(3ab) ₂	543.4	_	41	515 (47) 249 (36) 191 (25) 125 (30)	69 (62) 57 (34) 41 (100)			
(3 bb) ₂	647.6	648	648	537 (45) 380 (20) 271 (43) 241 (50) 215 (52)	187 (36) 120 (52) 81 (52) 67 (78) 41 (78)			

Tab. 1. Massenspektren¹⁵⁾ der Verbindungen (3xy)₂

Charakterisierung der dimeren (Dihalogenaluminiooxy)diorganoborane (3)₂ in Lösung

IR-Spektren

Bei der Reaktion der Diboroxane 1 mit 2 verschwinden die typischen Absorptionsbanden von $1a^{16}$ ($v_{BOB} = 1400 \text{ cm}^{-1}$) und von $(2a)_n^{17}$ zugunsten einer intensiven, relativ breiten Bande der Verbindungen (3)₂ ($v_{AIOB} = 1135 \text{ cm}^{-1}$), die genau zwischen den Banden $v_{BOB} = 1400 \text{ und } v_{AIOAI} = 800 \text{ cm}^{-118}$ liegt.

Kernresonanzspektren der dimeren Verbindungen (3)2

[']H-NMR-Spektren¹⁹: Die Ethyl-Protonen von in Benzol ($\delta^{1}H = 7.28$, bez. auf Benzol intern) gelöstem (**3aa**)₂ und (**3ab**)₂ liegen im Erwartungsbereich und treten als Multipletts für das A₃B₂-System (z. B. (**3aa**)₂: $\delta^{1}H = 0.98$, vgl. Tab. 2) auf. Der Schwerpunkt des Multipletts der O-Diethylborylgruppe von (**3aa**)₂ ist im Vergleich zum Erscheinungsbild des Quasisinguletts (60-MHz-Spektrum) von **1a** ($\delta^{1}H =$ 1.03) wenig hochfeldverschoben ($\Delta \approx 0.05$ ppm). Das Ethyl-Signal von (**3ab**)₂ ($\delta^{1}H =$ 1.04) ist kaum tieffeldverschoben. Das Erscheinungsbild von sämtlichen B-Ethylgruppen spricht für die Bindung an ein dreifach koordiniertes Bor-Atom²⁰.

Verbindung		NMR-Signale (ppm) und Multiplizitäten bzw. Halbhöhenbreiten $[h_{1/2} (Hz)]^{a}$ Ethylgruppen						
Nr.	Formel	δ^{1} H CH ₂ CH ₃	δ ¹³ C CH ₂	CH3	δ ¹¹ B	δ ¹⁷ Ο	δ ²⁷ Al ³⁰⁶⁾	
1 a	(Et ₂ B) ₂ O	1.03 (s)	14. 0, br	7.78	52.8 [125]	224 [135]	-	
1 b	(9-BBN) ₂ O	-			58.2 [140]	207 [220]	-	
(3aa) ₂	[Et ₂ BOAlCl ₂] ₂	0.98 (m)	15.5, br	6.84	60.6 [550]	128 [60]	90 [960]	
(3ab) ₂	[Et ₂ BOAlBr ₂] ₂	1.04 (m)	16.0, br	6.87	61.7 [610]	136 [120]	88 [1000]	
(3 ba) ₂	[9-BBNOAICl ₂] ₂	-	-	-	62.6 ^{b)} [500]	121 ^{b)} [90]	91 ^{b)} [700]	
(3 bb) ₂	[9-BBNOAlBr ₂] ₂	_	_	-	59.5 ^{b)} [560]	129 ^{b)} [110]	88 ^{b)} [600]	

Tab. 2. Ausgewählte NMR-Daten¹⁹⁾ der Verbindungen 1 und 3 (9-BBN = 9-Borabicyclo[3.3.1]non-9-yl)

 $^{\rm a)}$ Geräte und Meßbedingungen s. Exp. Teil bei den allgemeinen Erläuterungen. - $^{\rm b)}$ Meßwerte bei 353 K.

⁽¹B-NMR-Spektren: Im Vergleich zu den ¹¹B-NMR-Signalen²¹⁾ der Tetraorganodiboroxane **1a** und **b** findet man die verbreiterten ¹¹B-Signale der dimeren Verbindungen **3** bei niedrigen Frequenzen (vgl. Tab. 2). Die Signalverbreiterung weist auf das vergrößerte Molekül und die damit verbundene verkürzte Relaxationszeit des ¹¹B-Quadrupols $T_{O(11B)}$ (Zunahme der Korrelationszeit τ_C) hin²²⁾.

¹³C-NMR-Spektren²³): Man findet die breiten ¹³C-Methylensignale (C_{α}-Atom) der B-Ethylgruppen von (**3aa**)₂ und (**3ab**)₂ im Vergleich zu denen des Edukts **1a** ($\delta = 14.0$)⁸) um $\gtrsim 1$ ppm tieffeldverschoben bei 15.5 bzw. 16.0 ppm. Die Entschirmung ist auf die verminderte BO(pp) π -Wechselwirkung in (**3**)₂ gegenüber 1²⁴) zurückzuführen. Die Strukturlosigkeit (Breite) des C_{α}-Signals nimmt beim Übergang von **1** nach (**3**)₂ deutlich ab, was auf die verstärkte Beeinflussung durch den O-"freien", schneller relaxierenden ¹¹B-Quadrupol zurückzuführen sein könnte.

Die ¹³C-Signale der Methylgruppen (C_{β}-Atom) der *B*-Ethylgruppen von (**3aa**)₂ und (**3ab**)₂ sind gegenüber **1a** ($\delta = 7.78$)²³⁾ hochfeldverschoben und liegen bei 6.84 bzw. 6.87 ppm (vgl. Tab. 2). Insgesamt wird somit die δ -Differenz von C_{α}- und C_{β}-Kohlenstoff in (**3**)₂ um \approx 3 ppm größer als in **1**.

Die ¹³C-NMR-Spektren von $(3ba)_2$ und $(3bb)_2$ konnten wegen deren schlechter Löslichkeit nicht aufgenommen werden.

¹⁷O-NMR-Spektren: Die ¹⁷O-NMR-Daten (vgl. Tab. 2) eignen sich zur Identifizierung von 1 und (3)₂ nebeneinander²⁵⁾. Auch der Reaktionsverlauf von 1 nach (3)₂ läßt sich einschließlich der Nebenprodukte ¹⁷O-NMR-spektroskopisch gut beobachten. Die Messungen werden bei Verwendung von auf $\ge 5\%$ ¹⁷O-angereicherten 1a* und 1b* wesentlich erleichtert. Trotz der erhöhten Molmassen sind die Halbhöhenbreiten $h_{1/2}$ der ¹⁷O-NMR-Signale von (3)₂ mit 60 bzw. 90 Hz kleiner als die von 1 (135 bzw. 220 Hz). Dies ist auf die trigonal-planare Umgebung des Sauerstoff-Atoms (KZ₀ = 3) und die damit verbundene längere Relaxationszeit des O-Quadrupols zurückzuführen.

Die ¹⁷O-NMR-Signale von (3)₂ (128, 136 ppm) sind im Vergleich zu denen von 1 deutlich hochfeldverschoben. Dies könnte u.a. auf den Wechsel der Koordinationszahl des O-Atoms von 2 nach 3 zurückzuführen sein. Die ¹⁷O-Resonanzen der ¹⁷O-angereicherten Chlor-Derivate (3aa)₂* und (3ba)₂* sind im Vergleich zu denen der ¹⁷O-angereicherten Brom-Derivate (3ab)₂* und (3bb)₂* um $\Delta \approx 8$ ppm entschirmt. Die Linienbreite von (3ab)₂* und (3bb)₂* ist wegen der erhöhten Molmasse etwas größer als die von (3aa)₂* und (3ba)₂*. Die Halbhöhenbreite der ¹⁷O-NMR-Signale von (3aa)₂* bzw. (3ba)₂* verringert sich beim Erwärmen von 20 auf 80°C von ≈135 auf ≈50 Hz.

²⁷Al-NMR-Spektren²⁶: Die ²⁷Al-NMR-Signallage ($\delta = 88-90$) im 104.3-MHz-Spektrum der in [D₈]Toluol gelösten (**3xy**)₂ deutet auf vierfach koordinierte Al-Atome hin^{30a}). Die Signalbreiten von 800-1000 Hz stimmen mit der vorgeschlagenen Umgebung der Al-Atome überein. Wegen der Molekülgröße sind bei den Brom-Derivaten (**3ab**)₂ und (**3bb**)₂ die ²⁷Al-Linien etwas breiter als bei den Chlor-Verbindungen (**3aa**)₂ und (**3ba**)₂.

Die ²⁷Al-NMR-Signale der 1,5-Cyclooctandiylboryl-Derivate $(3ba)_2$ und $(3bb)_2$ wurden nur deshalb etwas schmaler gefunden als die der Diethylboryl-Verbindungen $(3aa)_2$ und $(3ab)_2$, da jene wegen der Schwerlöslichkeit bei $\approx +80$ °C spektroskopiert wurden.

Charakterisierung der Verbindungen (3)2 im festen Zustand

DSC-Messungen und Schmelzpunkte (Kryoskopie)

Die Schmelzpunkte der dimeren 1,5-Cyclooctandiyl-Derivate $(3ba)_2$ und $(3bb)_2$ liegen bei $\gtrsim 270$ °C und damit deutlich höher als die der Diethyl-Derivate $(3aa)_2$ und $(3ab)_2$, die im Bereich von 50-70 °C schmelzen (vgl. Tab. 3).

Varbin dun a	Gef. Schmelzpunkt (°C)					
verbindung	SchmpApparat	DSC-Messung ³⁴⁾				
(3aa) ₂	66	60				
$(3ab)_2$	70	69				
$(3ba)_2$	276	276				
(3 bb) ₂	273	278				

Tab. 3.	Schmelzverhalten	der	3-Dimeren
---------	------------------	-----	-----------

Aus den von $\approx 0^{\circ}$ C bis zum Schmelzpunkt aufgenommenen DSC-Kurven von (3)_n geht hervor, daß bei sämtlichen Verbindungen unterhalb des Schmelzpunkts keinerlei endotherme und/oder exotherme Umwandlungen nachzuweisen sind. Im

festen Zustand sollten somit weder Oligomerisierungen noch Mischassoziationen erfolgen. Die Bildung von Mischassoziaten^{13,14)} aus 2 und 3 (vgl. weiter unten) kann ausgeschlossen werden.

Röntgenstrukturanalysen von (3aa)2 und (3bb)2

Abb. 2. Atom-Anordnung in (3bb)₂

Entsprechend der kristallographisch bedingten Punktgruppensymmetrie liegen $(3aa)_2$ und $(3bb)_2$ dimer mit der Symmetrie $Ci(\overline{1})$ vor. Die Atome Al, O, B, C1 und C3 in $(3aa)_2$ und Al, O, B, C1 und C5 in $(3bb)_2$ sind koplanar. Die größte Abweichung von der besten Ebene durch diese Atome beträgt ± 0.047 Å für Al und Al* in $(3aa)_2$ (Abb. 1) und ± 0.005 Å für Al und Al* in $(3bb)_2$ (Abb. 2). Die Methyl-Kohlenstoffatome der Ethyl-Gruppen liegen 1.34 Å (C2) bzw. 0.54 Å (C4) ober-

halb bzw. unterhalb der Molekülebene. Eine zweite Ebene, die durch die Atome Al, Cl1 und Cl2 für (**3aa**)₂ bzw. Al, Br1 und Br2 für (**3bb**)₂ definiert ist, steht senkrecht (89 bzw. 90°) zu der ersten Ebene. Für die Aluminium-Atome in (**3aa**)₂ und in (**3bb**)₂ ergibt sich somit jeweils eine verzerrte tetraedrische Geometrie, während die Bor-Atome in jeweils exakt trigonal planarer Anordnung vorliegen. Die Aluminium-Sauerstoff-Abstände betragen 1.812 (2) und 1.819 (2) Å für (**3aa**)₂ bzw. 1.828 (4) und 1.825 (4) Å für (**3bb**)₂. Sie sind damit geringfügig länger als im dimeren Dibrom(trimethylsiloxy)aluminium (1.79 und 1.80 Å)²⁷⁾. Wie dort, so ist auch in (**3aa**)₂ und (**3bb**)₂ der O-Al-O*-Winkel (82.3°, 82.2°) spitzer als der Al-O-Al*-Winkel (97.7°, 97.8°). Die Al-Cl-Abstände [2.073 (1) und 2.080 (1) Å] in (**3aa**)₂ entsprechen bekannten Werten im dimeren Dichlor(dimethylamino)aluminium [2.088 (3) und 2.123 (3) Å]²⁸⁾ bzw. im dimeren Dichlormethylaluminium (2.05 ± 0.01 Å)²⁹⁾. Die Al-Br-Bindungslängen [2.234 (2) und 2.235 (2) Å] in (**3bb**)₂ sind vergleichbar denen im dimeren Dibrom(trimethylsiloxy)aluminium²⁷⁾ [2.247 (4) und 2.238 (4) Å].

Bin	dungsa	bstände in (<u>3aa</u>) ₂	Bind	lun	gswi	nkel	in	(<u>3aa</u>) ₂	Bin	dungs	wiı	nkel i	in	(<u>3bb</u>) ₂
A1	- C11	2.073(1)	C11		A1 -	C12		117.0(1)	Br1	- A1	-	Br2		118.6(1)
A1 -	- C12	2.080(1)	0	- 1	Al -	0*		82.3(1)	0	- Al	÷	0*		82.2(2)
A1 ·	- 0	1.812(2)	0	- 1	Al -	CIT		112.6(1)	0	- AI	-	Br1		113.1(2)
A1 -	- 0*	1.819(2)	0	- 4	Al -	C12		113.3(1)	0	- A1	-	Br2		112.6(2)
0	- В	1.420(5)	0*	- ,	Al -	C11		113.6(1)	0*	- Al	-	Brl		112.8(2)
B	- Cl	1.548(6)	0*	- 4	Al -	C12		113.2(1)	0*	- Al	-	Br2		112.1(2)
в -	- C3	1.551(7)	A1	- (o -	A1*		97.7(1)	A1	- 0	-	A1*		97.8(2)
C1 ·	- C2	1.510(7)	A1	- (0 -	В		131.3(2)	A1	- 0	-	В		132.6(4)
C3 ·	- C4	1.476(8)	A1*	- 1	0 -	В		131.0(2)	в	- 0	-	A1*		129.6(4)
			0	- 1	в -	C1		117.7(4)	0	- B	-	C1		122.7(6)
Bin	lungen	hetände in (3bb)	0	-)	в –	C3		115.9(4)	0	- B	-	C5		123.3(6)
	Truigea		C1	- 1	в –	C3		126.4(4)	C1	- B	-	C5		114.0(6)
Br1	- Al	2,235(2)	В	- (C1 -	C2		111.9(4)	В	- C1	-	C2		108.3(7)
Br2	- AI	2,234(2)	В	- (сз -	C4		118,9(4)	В	- C1	-	C 8		105.5(7)
A1	- 0	1.828(4)							В	- C5	-	C4		108.6(7)
Al	- 0*	1.825(4)							В	- C5	-	C6		104.9(6)
0	- B	1,392(8)						•						
в	- C1	1.54(1)												
в	- C5	1.54(1)												
C1	- C2	1.50(1)												
C1	- C8	1.52(1)												
C5	- C4	1.51(1)												
C5	- C6	1.53(1)												

Tab. 4. Bindungsabstände (Å) und -winkel (°) in (3aa)₂ und (3bb)₂

¹⁷O-NMR-Spektroskopische Verfolgung verschiedener Reaktionen

a) Zur Herstellung der Verbindungen 3 aus 1 mit 2

Die Bildung der dimeren (Dihalogenaluminiooxy)diorganoborane 3 läßt sich mit Hilfe der ¹⁷O-NMR-Spektroskopie gut verfolgen.

Aus 5–2.5 mmol ¹⁷O-angereichertem Tetraethyldiboroxan (1a*) und \approx 2 mmol festem Aluminiumtrichlorid (2a) erhält man Lösungen, deren ¹⁷O-NMR-Spektren

neben dem ¹⁷O-NMR-Signal von 1a (224 ppm; $h_{1/2} = 100$ Hz) die ¹⁷O-Resonanz von (3aa)₂ bei 128 ppm ($h_{1/2} = 70$ Hz) aufweisen. Daneben treten ¹⁷O-NMR-Spurensignale bei 185, 107 und 100 ppm auf, die auf Verunreinigungen von Ethyldioxy-bor-Gruppierungen (185 ppm) und AlOAI-Produkte (108, 100 ppm) hinweisen. Unterhalb -20 °C tritt in der 5:1-Lösung von 1a* und 2a bei 154 ppm ein intensives ¹⁷O-NMR-Signal auf, das wir dem Mischassoziat (1a*)(2a) zuordnen.

Beim Vermischen von ≈ 5 mmol $1a^*$ und 1 mmol $(2b)_2$ in $[D_8]$ Toluol beobachtet man neben dem ¹⁷O-NMR-Signal des Edukts $1a^*$ ($\delta^{17}O = 224$; $h_{1/2} =$ 150 Hz) eine ¹⁷O-NMR-Resonanz mittlerer Intensität bei 136 ppm ($h_{1/2} = 100$ Hz), die dem Dimeren (3ab)₂ zuzuordnen ist. Außerdem treten zwei intensitätsschwache ¹⁷O-NMR-Signale bei ≈ 186 (vermutlich Triethyl-oxy-diboroxan-Gruppierung) und ≈ 108 ppm (AlOAl-Gruppierung) auf, die beide aus der Triethylboroxin-Verunreinigung ($\delta^{17}O = 146$) in $1a^*$ gebildet werden. – Das Gemisch aus äquimolaren Mengen $1a^*$ und (2b)₂ in Toluol (1 h, 100°C) enthält neben restlichem $1a^*$ ($\delta^{17}O = 224$; $h_{1/2} = 100$ Hz) das Hauptprodukt (3ab)₂ ($\delta^{17}O = 136$; $h_{1/2} =$ 120 Hz) sowie Verbindungen mit intensitätsstarken ¹⁷O-NMR-Signalen bei ≈ 108 (breit) und 155 ppm ($h_{1/2} = 140$ Hz), das vermutlich vom Mischassoziat ($1a^*$)(2b) stammt. Eine intensitätsschwache ¹⁷O-Resonanz tritt bei ≈ 186 ppm auf.

5 mol ¹⁷O-angereichertes Bis(1,5-cyclooctandiyl)diboroxan (**1b***) reagieren in [D₈]Toluol mit 1 mol (**2b**)₂ unter Bildung von (**3bb**)₂*, dessen ¹⁷O-NMR-Signal bei 129 ppm (breit) neben dem 1b*-Signal bei 207 ppm ($h_{1/2} = 340$ Hz) auftaucht. Beim 1b*/(**2b**)₂-Mengenverhältnis von $\approx 2:1$ fällt ein großer Teil von (**3bb**)₂ (δ^{17} O = 129) aus. In der abgetrennten Toluol-Lösung lassen sich Verbindungen mit den ¹⁷O-NMR-Signalen bei 141 ($h_{1/2} = 100$ Hz) [vermutlich (**1b**)(**2b**)], bei 129 ($h_{1/2} =$ 200 Hz) [(**3bb**)₂] und 106 ppm ($h_{1/2} = 340$ Hz) [vermutlich AlOAl-Verbindung] nachweisen.

b) Reaktionsverhalten von (3aa)₂

1. Gegenüber Lösungsmitteln

 $(3aa)_2$, gut löslich in aliphatischen und aromatischen Kohlenwasserstoffen sowie in Dichlormethan, kann aus Toluol oder auch aus 4aa umkristallisiert werden. $(3ba)_2$ ist in Benzol sowie anderen Arenen praktisch unlöslich. $(3ab)_2$ löst sich in Benzol, $(3bb)_2$ dagegen nur wenig. $(3bb)_2$ wurde aus Toluol umkristallisiert.

2. Gegenüber Lewisbasen

Bei Einwirkung von THF, Pyridin oder Benzonitril auf $(3aa)_2$ werden 1a abgespalten und nicht identifizierte, feste Chloraluminium-Sauerstoff-Verbindungen gebildet, die mit der Base komplexieren.

3. Gegenüber Wärmeeinwirkung

 $(3aa)_2$ (Schmp. 66°C), $(3ba)_2$ (Schmp. 276°C) und $(3ab)_2$ (Schmp. 70°C) lassen sich im Hochvakuum unzersetzt sublimieren. Beim Erhitzen von $(3aa)_2^*$ bzw. $(3ba)_2^*$ in [D₈]Toluol auf ≈ 80 °C verändern sich Lage und Intensität des ¹⁷O-NMR-Signals praktisch nicht. Lediglich die Halbhöhenbreite der Signale ($\delta^{17}O =$ 127.7 bzw. 121.7) gehen von ≈ 135 auf ≈ 50 Hz zurück. Außer $(3aa)_2$ bzw. $(3ba)_2$ lassen sich in der Lösung keine weiteren Verbindungen (Monomere, Trimere) nachweisen. Oberhalb ≈ 150 °C ist $(3aa)_2$ nicht stabil. Als flüchtige Anteile bilden sich Triethylboran, Chlordiethylboran (4aa) und wenig 1a. Der Rückstand besteht aus einem Gemisch unbekannter ethylborhaltiger Chloraluminium-Sauerstoff-Verbindungen, für die wir die in den geschweiften Klammern angegebenen Zusammensetzungen bzw. Strukturen vorschlagen.

Beim Erhitzen von festem $(3ba)_2$ auf ≈ 200 °C bildet sich eine dunkelbraune Schmelze, aus der nach ≈ 15 h wenig Triethylboran abgespalten ist. Nach Abkühlen wird verunreinigtes $(3ba)_2$ erhalten.

4. Gegenüber Wasser

 $(3aa)_2$ reagiert mit Wasser spontan: Das ¹⁷O-NMR-Spektrum von $(3aa)_2^*$ ($\delta^{17}O = 128$) in Toluol weist nach Zugabe von wenig Wasser mit natürlicher O-Häufigkeit überhöhte ¹⁷O-NMR-Signale bei 224, 125, 109, 77, 64 und 26 ppm auf. Neben **1a**^{*} ($\delta^{17}O = 224$) bilden sich Diethylhydroxyboran ($\delta^{17}O = 125$) sowie nicht im einzelnen identifizierte Verbindungen mit AlOAI- bzw. AlOH-Gruppierungen ($\delta^{17}O = 109$, 77, 64, 26), die vermutlich 2- und 3-fach koordinierte Sauerstoff-Atome enthalten.

5. Gegenüber Tetraethyldiboroxan (1a)

Aus 1 mmol $(3aa)_2^*$ ($\delta^{17}O = 128$) erhält man mit 5 mmol 1a in Toluol spontan eine Lösung, in der die ¹⁷O-Atome im wesentlichen auf 1a* ($\delta^{17}O = 224$; $h_{1/2} =$ 90 Hz) übertragen sind. Außer dem Edukt-Signal beobachtet man intensitätsschwache ¹⁷O-Resonanzen bei 107, 77 und 64 ppm (vermutlich AlOAl-Gruppierungen).

Das äquimolare Gemisch aus $(3aa)_2^*$ und 1a besteht ¹⁷O-NMR-spektroskopisch aus den zwei Hauptprodukten 1a* ($\delta^{17}O = 224$; $h_{1/2} = 110$ Hz) und $(3aa)_2^*$ ($\delta^{17}O = 128$; $h_{1/2} = 160$ Hz) sowie aus vier Produkten niedriger Konzentration mit ¹⁷O-NMR-Signalen bei 108, 77, 63 und 55 ppm. Der Austausch der Diethylboryloxy-Gruppe zwischen (3aa)₂ und 1a erfolgt somit spontan, verläuft allerdings nicht ohne Nebenreaktion.

6. Gegenüber (3ba)₂

 $(3aa)_2^*$ ($\delta^{17}O = 128$) bildet mit $(3ba)_2^*$ ($\delta^{17}O = 121$) in Toluol eine homogene Lösung, in der bei 20-80°C die ¹⁷O-NMR-Signale der beiden Edukte getrennt nebeneinander auftreten. Ein Mischassoziat (3aa)(3ba) kann nicht völlig ausgeschlossen werden, da die ¹⁷O-NMR-Signallage allein für die unmittelbare ¹⁷O-Atomumgebung und nicht für das Gesamtmolekül charakteristisch ist. Monomere Verbindungen vom Typ 3 mit zweifach koordiniertem Sauerstoff-Atom treten bis 80°C in Toluollösung nicht auf.

Der Austausch von O-Atomen konnte zwischen $(3ba)_2^*$ und $(3aa)_2$ nachgewiesen werden: Aus 5 mmol $(3aa)_2$ und 1 mmol $(3ba)_2^*$ erhält man in Toluol bei $\approx 20^{\circ}$ C spontan gemäß (6) ein 5:1-Gemisch aus $(3aa)_2^*$ und $(3ba)_2^*$.

5
$$(3aa)_2 + 1 (3ba)_2^* \rightleftharpoons 5 (3aa)_2^* + 1 (3ba)_2$$
 (6)
 $\delta^{17}O$ 121 128

c) Reaktionen der Diboroxane 1 mit Wasser

Das ¹⁷O-NMR-Signal von **1a*** liegt nach Versetzen mit Wasser bei 125 ppm (Diethylhydroxyboran)³¹, das von **1b*** bei 120 ppm (9-Hydroxy-9-borabicyclo-[3.3.1]nonan)³².

Experimenteller Teil

Sämtliche Reaktionen und Messungen führte man in über Na/K-Legierung absolutierten Lösungsmitteln (Benzol, $[D_8]$ Toluol) unter Inertgas (Ar) durch. – Analysen und Molmassen (kryoskopisch in Benzol): Firma Dornis und Kolbe, Mülheim an der Ruhr. – Die Bestimmung der B_C-Werte (B gebunden an C) wurde mit wasserfreiem Trimethylamin-N-oxid in siedendem Toluol³³) durchgeführt.

Geräte: DSC³⁴: Calorimeter Du Pont 1090–910 (Aufheizgeschwindigkeit: 10 K/min). – IR³⁵): Perkin-Elmer 297, in Benzol oder als Film (Schichtdicke 25 µm) zwischen NaCl-Platten. – Massenspektren¹⁵): Finnigan MAT CH 5 für Molmassen fester und flüssiger Proben. – ¹H-NMR-Spektren¹⁹): Varian EM 360, Benzol intern, $\delta = 7.28$; Werte bez. auf Tetramethylsilan, $\delta = 0. - {}^{11}B$ -NMR-Spektren¹⁹): Varian FT-NMR-Spektreneter XL 100-15 (32.1 MHz); (C₂H₅)₂O-BF₃ extern, $\delta = 0. - {}^{13}C$ -NMR-Spektren¹⁹): Varian FT-NMR XL 100-15 (25.2 MHz), [D₈]Toluol, Tetramethylsilan intern, $\delta = 0. - {}^{17}O$ -NMR-Spektren¹⁹): Bruker WH 400 (54.2 MHz); H₂¹⁷O extern, $\delta = 0$; [D₈]Toluol als Locksubstanz. – ${}^{27}A$ l-NMR-Spektren¹⁹): Bruker WH 400 (104.2 MHz); [D₈]Toluol, Al(acac)₃ extern, $\delta = 0$.

Edukte: Tetraethyldiboroxan $(1a)^{36,37}$ und 1,1:3,3-Bis(1,5-cyclooctandiyl)diboroxan $(1b)^{38}$ wurden nach Literaturangaben hergestellt. Die ${}^{17}O/{}^{18}O$ -angereicherten Tetraalkyldiboroxan $(1a)^{36-38}$ und $1b^*$ präparierte man nach den gleichen Methoden ${}^{36-38}$ mit O-Isotopenangereichertem Wasser $(21.7\% \, {}^{17}O, 62.2\% \, {}^{18}O)$ der Firma Ventron, Karlsruhe. – Was-

serfreies, festes Aluminiumtrichlorid $(2a)_n$, Merck-Schuchardt, sublimierte man unter Atmosphärendruck bei 200-300 °C im Argonstrom. Dimeres Aluminiumtribromid $(2b)_2$, Fluka, Buchs (Schweiz), wurde ohne weitere Reinigung verwendet.

[(Dichloraluminiooxy)diethylboran]-Dimeres (3aa)₂: Zu 3.7 g (27.6 mmol) 2a in 20 ml Toluol gibt man bei ≈ 20 °C mindestens 4.25 g (27.6 mmol) 1a und erwärmt unter Rühren ca. 1 h auf ≈ 50 °C. Nach Abkühlen auf ≈ 0 °C scheiden sich Kristalle ab. Im Vak. zieht man alles Leichtflüchtige (vorwiegend Chlordiethylboran) ab und gewinnt 5.07 g (99%) rohes (3aa)₂, das nach Sublimieren bei 10⁻³ Torr/ ≤ 60 °C 4.87 g (95%) reines (3aa)₂, Schmp. 66 °C, liefert. – MS: kein M⁺; m/z 335 (¹¹B₂³⁵Cl₄; Basispeak); weitere Peaks (jeweils intensivster des Ensemble): 203 (55% rel. Int.), 153 (42), 119 (22), 69 (25), 57 (31), 41 (32). – NMR vgl. Tab. 2. – DSC-Messung: vgl. Tab. 3.

Thermolyse: Aus 4.53 g (12.4 mmol) (**3aa**)₂ bilden sich unter Atmosphärendruck bei ≈ 170 °C (Ölbad) nach ≈ 72 h 1.42 g flüssiges Destillat [¹¹B-NMR: 31 mol-% B(C₂H₃)₃, 60.5 mol-% (C₂H₃)₂BCl und 8.5 mol-% (C₂H₃)₄B₂O] und 2.83 g glasartiger Rückstand (Gef. C 10.20, H 1.98, Al 27.57, Cl 36.88, B 6.36).

[1,5-Cyclooctandiyl(dichloraluminiooxy)boran]-Dimeres (3ba)₂: Zur Suspension von 4.22 g (31.6 mmol) 2a in 30 ml Benzol gibt man bei $\approx 20^{\circ}$ C mindestens 8.31 g (32.2 mmol) festes 1b (Schmp. 107°C), läßt ≈ 3 h bei 60°C rühren (Abscheiden von Kristallen) und filtriert nach Abkühlen auf $\approx 20^{\circ}$ C von 7.03 g (95%) kristallisiertem, rohen (3ba)₂ ab. Im Filtrat läßt sich 9-Chlor-9-borabicyclo[3.3.1]nonan (4ba) nachweisen (¹¹B-NMR: $\delta = 81$, $h_{1/2} =$ 93 Hz). Aus ≈ 200 ml Benzol wird (3ba)₂ umkristallisiert. Man gewinnt 6.82 g (92%) reines (3ba)₂, Schmp. 276°C (ohne Zers.), das in Benzol praktisch unlöslich ist. (3ba)₂ läßt sich i. Hochvak. unter Abspaltung kleiner Mengen 4ba sublimieren (160–180°C/10⁻³ Torr). – MS (70 eV): m/z 470 (M⁺, Basispeak), 359 (28% rel. Int.), 199 (20), 171 (32), 138 (33), 125 (35), 78 (28), 67 (35), 41 (53). – NMR: vgl. Tab. 2.

[(Dibromaluminiooxy)diethylboran]-Dimeres (**3ab**)₂: Zur Lösung von 11.26 g (21.1 mmol) (**2b**)₂ in 20 ml Toluol gibt man bei $\approx 20^{\circ}$ C 6.5 g (42.2 mmol) **1a**, wobei sich das Gemisch bis $\approx 60^{\circ}$ C erwärmt. Nach 1 h Rühren bei $\approx 50^{\circ}$ C zieht man i. Vak. bei 20°C alles Leichtflüchtige [Bromdiethylboran (**4ab**) (¹¹B-NMR: $\delta \approx 61$) und Toluol] ab. Es hinterbleiben 11.5 g ($\approx 100\%$) rohes (**3ab**)_n, die nach Sublimation (60° C, 10^{-3} Torr) 10.8 g (94%) reines, äußerst luft- und feuchtigkeitsempfindliches (**3ab**)₂, Schmp. 70°C, liefern. – MS (70 eV): kein M⁺; m/z 515 (¹¹B₂⁷⁹Br₄, 47% rel. Int.), 249 (36), 191 (25), 125 (30), 69 (62), 57 (34), 41 (Basispeak). – NMR: vgl. Tab. 2. – DSC-Messung³⁴: Tab. 3.

 $C_8H_{20}Al_2B_2Br_4O_2$ (543.4) Ber. C 17.68 H 3.71 Al 9.93 B 3.98 Br 58.82 B_c 2.65 Gef. C 17.71 H 3.85 Al 9.98 B 3.96 Br 58.61 B_c 2.50 Molmasse 694 (kryoskop. in Benzol)

Erhitzen von $(3ab)_2$: Bei 15 h Erhitzen von 2.21 g (4.07 mmol) gelbem $(3ab)_2$ auf ≈ 200 °C (Ölbad) wird die Schmelze dunkelbraun. Im Vak. lassen sich keine flüchtigen Produkte abtrennen. Beim Abkühlen wird die Verbindung wieder fest (Schmp. ≈ 50 °C, unscharf). – ¹¹B-NMR (Toluol): $\delta \approx 61$ (4ab) neben sehr wenig $\delta = 86.7$ (BEt₃).

[1,5-Cyclooctandiyl(dibromaluminiooxy)boran]-Dimeres (3bb)₂: Zur Lösung von 3.91 g (7.3 mmol) (2b)₂ in 20 ml Toluol gibt man bei $\approx 20^{\circ}$ C 3.77 g (14.6 mmol) festes 1b und läßt ≈ 1 h bei 50°C rühren. Langsam scheiden sich Kristalle ab. Nach Abkühlen auf $\approx 20^{\circ}$ C filtriert man von 4.64 g (98%) rohem (3bb)₂ ab und kristallisiert aus Toluol um: 4.36 g (92%), Schmp. 273°C (Zers.). – MS (70 eV): m/z 648 (M⁺, ¹¹B₂⁷⁹Br₄, Basispeak), 537 (45% rel. Int.), 380 (20), 271 (43), 241 (50), 215 (52), 187 (36), 120 (52), 81 (52), 67 (78), 41 (78). – NMR: vgl. Tab. 2.

C₁₆H₂₈Al₂B₂Br₄O₂ (647.6) Ber. C 29.67 H 4.36 Al 8.33 B 3.34 Br 49.36 Gef. C 29.48 H 4.11 Al 8.41 B 3.27 Br 49.46 Molmasse 900 (kryoskop. in Benzol)

Röntgenstrukturanalysen von (3aa)₂ und (3bb)₂

Ein aus Toluol erhaltener, farbloser Kristall der Verbindung $(3aa)_2$ (Abmessungen in Tab. 5) wurde in einer Lindemann-Kapillare unter Argon montiert. Sämtliche Messungen an diesem Kristall erfolgten auf einem Enraf-Nonius CAD-4 Diffraktometer mit Nickelgefilterter Cu-Strahlung ($\lambda = 1.54178$ Å). Die Gitterkonstanten (Tab. 5) ergaben sich aus der Verfeinerung der Streuwinkel von 75 Reflexen. Nach Korrektur der Daten für Lorentz-, Polarisations- und Absorptionseffekte konnte die Struktur nach der Schweratom-Methode gelöst werden; nachfolgende Fourier-Synthesen lieferten sämtliche Atom-Positionen der schwereren Atome. Eine Differenz-Synthese ergab lediglich die Positionen von vier Wasserstoffatomen, so daß die Positionen der verbleibenden sechs Wasserstoff-Atome nach idea-

Formel	$C_8H_{20}Al_2B_2Cl_4O_2$	$C_{16}H_{28}Al_2B_2Br_4O_2$
Molmasse	365.64	647.60
Kristallgröße (mm)	$0.7 \times 0.6 \times 0.2$	$0.6 \times 0.6 \times 0.3$
Farbe	farblos	farblos
a (Å)	6.3061 (5)	10.004 (2)
b (Å)	13.279 (1)	9.777 (2)
$c(\mathbf{\hat{A}})$	11.3869 (6)	13.505 (2)
β (°)	91.866 (4)	108.54 (1)
$V(Å^3)$	952.99	1252.23
$d_{\rm her} ({\rm gcm}^{-3})$	1.27	1.72
Raumgruppe	$P2_1/n$ (14)	$P 2_1/n$ (14)
Z	2	2
μ (cm ⁻¹)	66.2	64.4
λ(Å)	1.54178	0.71069
NONIUS CAD-4 Diffraktometer		
<i>T</i> (°C)	20	20
Meßmethode	$\Theta - 2 \Theta$ Scan	$\Theta - 2 \Theta$ Scan
Θ -Bereich (°)	3.3-74.6	1.6-27.4
gemessene Reflexe $\left[\pm h \pm k + l\right]$	3897	5993
unabhängige Reflexe	1947	2828
davon beobachtet $(I \ge 2 \sigma (I))$	1512	1490
verfeinerte Parameter	82	118
Absorptionskorrektur	empirisch	empirisch
R	0.056	0.049
$R_{w} (w = 1/\sigma^2 (F_{o}))$	0.066	0.045
max. Restelektronendichte ($e^{A^{-3}}$)	0.24	0.9

Tab. 5. Daten zur Kristallstrukturanalyse von $(3aa)_2$ und $(3bb)_2$

lisierter Geometrie berechnet wurden. In der abschließenden Strukturverfeinerung wurden die Parameter der H-Atome nicht variiert³⁹.

ATOM X v Z U_{eq} C11 0.3774(1) 0.2870(1) 0.5612(1)0.082 C12 0.8324(1) 0.3587(1) 0.4074(1)0.088 A1 0.5581(1) 0.4012(1) 0.053 0.4909(1) n 0.5981(3)0.5059(1)0.5913(1) 0.054 В 0.7132(8) 0.5131(3) 0.7001(4) 0.066 C1 0.7008(7)0.7684(3) 0,075 0.6136(3)C2 0.5811(8) 0.6024(4) 0.8803(5) 0,115 C3 0.8332(9) 0.4167(3) 0.7410(4) 0.091 C4 1.0170(9) 0.4266(4) 0.8238(5) 0.111

Tab. 6a. Atomkoordinaten und thermische Parameter von (**3aa**)₂, $U_{eq} = (U_1 U_2 U_3)^{1/3}$, wobei U_i die Eigenwerte der Matrix U_{ij} sind

Tab. 6b. Atomkoordinaten und thermische Parameter von (3bb)₂

Atom	х	Y	Z	U eq
Brl	0.0802(1)	0.1620(1)	0.2144(1)	0.069
Br2	-0.2687(1)	0.1771(1)	-0.0118(1)	0.065
A1	-0.0509(1)	0.0931(1)	0.0555(1)	0.037
0	0.0459(4)	0.0918(3)	-0.0387(2)	0.036
в	0.0998(7)	0.1957(7)	-0.0853(5)	0.043
C1	0.1795(7)	0.1674(6)	-0.1637(5)	0.049
C2	0.105(1)	0.241(1)	-0.2633(6)	0.101
C3	0.033(2)	0.366(1)	-0,2575(8)	0.109
C4	0.0130(9)	0.4210(9)	-0.1632(9)	0.091
C5	0.0873(8)	0.3487(6)	-0.0621(5)	0.053
C6	0.239(1)	0.3966(8)	-0.0107(7)	0.090
C7	0.3397(9)	0.360(1)	-0,0682(8)	0.090
C8	0.3295(9)	0.218(1)	-0.1109(8)	0.090

Der von $(3bb)_2$ verwendete Kristall wurde aus Toluol gewonnen (Daten in Tab. 5). Bei $(3bb)_2$ berechnete man die Positionen aller H-Atome. Die Positionsparameter aller Nichtwasserstoffatome von $(3aa)_2$ und $(3bb)_2$ sind in Tab. 6a und 6b angegeben. Abb. 1 und 2 zeigt die Benennung der Atome. In Tab. 4 sind ausgewählte Bindungsabstände und -winkel zusammengefaßt.

CAS-Registry-Nummern

1a: 7318-84-5 / 1b: 74744-62-0 / 2a: 7446-70-0 / (2b)₂: 18898-34-5 / (3aa)₂: 99829-81-9 / (3ab)₂: 99829-83-1 / (3ba)₂: 99829-82-0 / (3bb)₂: 99829-84-2 / 4ab: 19162-10-8 / 4ba: 22086-34-6

¹⁾ 70. Mitteilung über Borverbindungen; 69. Mitteil.: W. V. Dahlhoff und K. M. Taba, Synthesis 1986, im Druck.

²⁾ Röntgenstrukturanalysen von (3aa)₂ (1981) und (3bb)₂ (1983): Weitere Angaben zur Kristallstrukturanalyse können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51618, der Autoren und des Zeitschriftenzitats angefordert werden.

- ³⁾ Derzeitige Adresse: Chemische Fakultät, Politechnika Warszawska, 00-664 Warschau, Polen.
- ⁴⁾ U. Gerwarth in Gmelin, 8. Aufl., Bd. 48/6, S. 74-84, 94-96 (1977).
- ⁵⁾ R. Köster in Methoden der Organischen Chemie (Houben-Weyl-Müller), Bd. XIII/3a, S. 810ff., Thieme, Stuttgart 1982.

- ⁷⁾ R. Köster und J. Serwatowski, XIV Polish-GDR Colloquy on Organometallic Chemistry, Stara Wies, Poland, S. 13, Oktober 1984.
- ⁸⁾ W. Fenzl und R. Köster, Inorg. Synth. 22, 188 (1983). ⁹⁾ R. Köster und G. Seidel, vgl. Lit.⁵⁾, S. 816, 819f.
- ¹⁰⁾ H. Schmidbaur, H. Hussek und F. Schindler, Chem. Ber. 97, 255 (1964).
- ¹¹⁾ L. Synoradzki, M. Boleslawski und J. Lewinski, J. Organomet. Chem. 284, 1 (1985).
- ¹²⁾ R. Köster, K. Angermund, J. Serwatowski und A. Sporzyński, Chem. Ber. 119 (1986), im Druck.
- ¹³⁾ M. Fishwick, C. A. Smith und M. G. H. Wallbridge, J. Organomet. Chem. 21, P 9 (1970).
- ¹⁴⁾ E. A. Jeffery, T. Mole und J. K. Saunders, Austr. J. Chem. 21, 649 (1968).
- ¹⁵⁾ MS-Daten: D. Henneberg, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ¹⁶⁾ G. F. Lanthier und W. A. G. Graham, Can. J. Chem. 47, 569 (1969).
- ¹⁷⁾ J. Deronault und M. T. Forel, Spectrochim. Acta, Part A 25, 67 (1969).
- ¹⁸⁾ A. Sadownik, Dissertation, Chemische Fakultät, Politechnika Warszawska, Warschau 1978.
- ¹⁹⁾ NMR-Labor, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ²⁰⁾ B. Wrackmeyer und R. Köster in Methoden der Organischen Chemie (Houben-Weyl-

- ²⁴⁾ W. Biffar, H. Nöth, H. Pommerening und B. Wrackmeyer, Chem. Ber. 113, 333 (1980); vgl. Lit.²⁰⁾, S. 469 ff.
 ²⁵⁾ Vgl. Lit.²⁰⁾, S. 414, 472-474, 538.
 ²⁶ Lit.²⁰⁾, S. 415, C. Durana d. C. Faradani, Chem. Commun. 1966 24 (27b) 14 Bergenetics

- ^{27) 27a)} M. Bonamico, G. Dessy und C. Ercolani, Chem. Commun. 1966, 24. ^{27b)} M. Bonamico und G. Dessy, J. Chem. Soc. A 1967, 1786. ²³⁾ A. Ahmed, W. Schwarz und H. Hess, Acta Crystallogr., Sect. B 33, 3574 (1977).

- ²⁰ A. Ahmed, W. Schwarz und H. Hess, Acta Crystallogr., Sect. D 53, 5374 (1977).
 ²⁹ G. Allegra, G. Perego und A. Immirzi, Macromol. Chem. 61, 69 (1963).
 ³⁰ ³⁰ ³⁰ R. Benn, A. Rufinska, H. Lehmkuhl, E. Janssen und C. Krüger, Angew. Chem. 95, 808 (1983); Angew. Chem., Int. Ed. Engl. 22, 779 (1983). ³⁰⁰ R. Benn und A. Rufinska, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr; vgl. Angew. Chem. 98 (1986), im Druck; Angew. Chem., Int. Ed. Engl. 25 (1986), im Druck.
 ³¹ B. Wrackmeyer und R. Köster, Chem. Ber. 115, 2022 (1982).
 ³² Lit.²⁰, S. 473f.
 ³³ P. Korta und Y. Morita Liebigs Ann. Chem. 704 70 (1967).

- ³³⁾ R. Köster und Y. Morita, Liebigs Ann. Chem. 704, 70 (1967).
 ³⁴⁾ W. R. Scheidt, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ³⁵⁾ K. Seevogel, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ³⁶ W. Fenzl und R. Köster, Inorg. Synth. 22, 188 (1983); vgl. Lit.⁵, S. 814.
 ³⁷ R. Köster und W. Fenzl, Liebigs Ann. Chem. 1974, 54.
 ³⁸ R. Köster und G. Seidel, Lit.⁵, S. 816.

- ³⁹⁾ Verwendete Computer-Programme waren: TRACER von Lawton und Jacobson für Zell-Reduktion; DATAP von Coppens, Leiserowitz und Rabinovich für Datenreduktion und analytische Absorptionskorrektur; DIFABS von Walker und Stuart für empirische Absorptionskorrektur; Sheldricks SHELX-76/84 für die Fourier-Synthesen und ersten Verfeinerungszyklen; GFMLS, eine lokal erweiterte Version des ORFLSD-Programmes von Hirshfeld, Coppens, Leiserowitz und Rabinovich für die abschließende Verfeinerung; DAESD von Davis für die Berechnung von Abständen und Winkeln; die besten Ebenen und Torsionswinkel wurden mit dem von Roberts und Sheldrick entwickelten Programm XANADU berechnet: für die Zeichungen benutzten wir Johnsons ORTEP. Streukurven: International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, England 1974.

[204/85]

⁶⁾ Lit. 5), S. 602.